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Abstract

Background: Burns are life-threatening with high morbidity and mortality. Reliable diagnosis supported by accurate
burn area and depth assessment is critical to the success of the treatment decision and, in some cases, can save the
patient’s life. Current techniques such as straight-ruler method, aseptic film trimming method, and digital camera
photography method are not repeatable and comparable, which lead to a great difference in the judgment of burn
wounds and impede the establishment of the same evaluation criteria. Hence, in order to semi-automate the burn
diagnosis process, reduce the impact of human error, and improve the accuracy of burn diagnosis, we include the
deep learning technology into the diagnosis of burns.

Method: This article proposes a novel method employing a state-of-the-art deep learning technique to segment the
burn wounds in the images. We designed this deep learning segmentation framework based on the Mask Regions
with Convolutional Neural Network (Mask R-CNN). For training our framework, we labeled 1150 pictures with the
format of the Common Objects in Context (COCO) data set and trained our model on 1000 pictures. In the evaluation,
we compared the different backbone networks in our framework. These backbone networks are Residual Network-101
with Atrous Convolution in Feature Pyramid Network (R101FA), Residual Network-101 with Atrous Convolution (R101A),
and InceptionV2-Residual Network with Atrous Convolution (IV2RA). Finally, we used the Dice coefficient (DC) value to
assess the model accuracy.

Result: The R101FA backbone network gains the highest accuracy 84.51% in 150 pictures. Moreover, we chose
different burn depth pictures to evaluate these three backbone networks. The R101FA backbone network gains the
best segmentation effect in superficial, superficial thickness, and deep partial thickness. The R101A backbone network
gains the best segmentation effect in full-thickness burn.

Conclusion: This deep learning framework shows excellent segmentation in burn wound and extremely robust in
different burn wound depths. Moreover, this framework just needs a suitable burn wound image when analyzing the
burn wound. It is more convenient and more suitable when using in clinics compared with the traditional methods.
And it also contributes more to the calculation of total body surface area (TBSA) burned.
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Background

Burn injuries require immediate treatment by estimating
the burn area and burn depth. Normally, this work is
hard to solve by the general nurse or the doctor.

Current calculation methods

As shown in Fig. 1, the current assessment of a burn
wound consists of three main methods [1-4]. The first
method is to attach the sterile film to the wound of the pa-
tient, then draw the wound boundary with a marking pen,
and finally calculate the area of the wound. This method is
influenced by the subjective factors of the marking person
and will bring about errors in some depths. The second
method is to use the digital camera to calculate the wound
area based on the principle of camera imaging. Then, this
digital camera uses NIH Image] software to calculate the
wound area. However, this software cannot automatically
identify the edge of the wound, which makes it necessary
to label the wound edge before calculating the wound area.
The third method is to use the BurnCalc system [4]. The
doctor uses this system to build 3D models of patients
through specialized 3D scanning equipment, then draws
the wound on the 3D model using a special drawing soft-
ware, and finally calculates the wound area. This method
needs to draw the artificial wound, which causes the final
area calculation result to be highly inaccurate. In 2018,
Cheah et al. designed a 3D application to calculate the
burn area [5]. This application builds the 3D body model
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by the people’s height and weight. Then, the doctors mark
the burn area on the surface of the 3D model. After mark-
ing, the application can calculate the burn area automatic-
ally. However, this calculation relies on the precise burn
area marked. Moreover, accurately marking the burn area
is a time-consuming work which is not suitable for busy
first-aid work.

We can conclude from above that the complicated and
time-consuming part in these methods is to determine the
wound region from the patient’s skin, which is where many
errors occur. To solve this problem, we used state-of-
the-art deep learning techniques to segment the wound
region, and this method can be well applied to the calcula-
tion of the wound area.

Object detection
Analyzing object recognition and location in images is one
of the most fundamental and challenging problems in com-
puter vision. In the deep learning, Regions with Convolu-
tional Neural Network (R-CNN) [6] is an object detection
method in imagery analysis. This system consists of three
parts. The first part generates category-independent region
proposals by selective search [7]. The second part is a large
convolutional neural network that extracts a fixed-length
feature vector from each region. The last part is a set of
class-specific linear support vector machines (SVM).

In order to realize faster training and evaluating, the
Fast R-CNN [8] obtains feature vectors from the shared

BurnCalc system 3D application

Fig. 1 Current mainstream diagnostic methods of burn wounds
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feature map. To avoid region proposals distortion, it
adds a region of interest (Rol) pooling layer [8] on the
basis of the R-CNN. Moreover, the author used the
multi-task loss in the classification and regression to
accelerate the system. In 2016, the Faster R-CNN [9]
applied the region proposal network (RPN) [9] network
to accelerate the speed of the generation of category-
independent region proposals. With the powerful deep
learning baseline, the object detection results can reach
a high standard.

RPN

In the early object detection system, the generation of re-
gion proposals is exhaustive search. Then, in 2013, Uijlings
et al. proposed a selective search to relieve the computa-
tional pressure [7]. Ren et al. then proposed an RPN which
generates high-quality region proposals from the shared
feature maps [9]. In generation, the RPN used a small slid-
ing window on the shared feature map. Then, at each
sliding-window location, the RPN generated multiple scale
rectangle boxes on the original image, and these rectangle
boxes are called anchors [9]. After that, the RPN network
used a small convolutional neural network to predict the
object score and box regression at each anchor. Then, the
RPN sorted the score of each anchor and used the greedy
non-maximum suppression to obtain region proposals.

Residual network (ResNet)

ResNet [10] was proposed in 2016 by Kaiming et al. In the
convolutional neural network, the deeper the network is,
the more features it can obtain. Although this feature of
the convolutional neural network leads to a series of break-
throughs in image classification, it also brings a lot of new
problems. For example, as the network depth deepens, the
notorious problems of vanishing/exploding gradient occur.
The deep residual learning network, which adds a reference
on each layer to learn the residual function, can address the
degradation problem properly. The main networks in the
ResNet are the ResNet101 [10] and ResNet50 [10].

Feature pyramid network (FPN)

EPN [11] was proposed in 2017 by the Lin et al. This net-
work can build high-level semantic feature maps at all
scales. It contains three parts which are bottom-up,
top-down, and lateral connections [11]. In general, ResNet
is the backbone network of the FPN. The output feature
map of each convolution layer is denoted as C,, Cs, Cy, and
Cs in the bottom-up part. The top-down part then upsam-
ples the feature map by using a factor of 2, and the
upsampled map is merged with the corresponding
bottom-up map. Then a 3 x 3 convolution is appended on
each merged map to generate the final feature map. The
final outputs of feature maps are called P,, P3, Py, and Ps.

Page 3 of 14

In this article, we adopt the ResNet101 and Atrous [12] in
FPN, and we called this backbone network as R101FA.

Mask R-CNN

In principle, Mask R-CNN is an intuitive extension of
Faster R-CNN, yet building the mask branch properly is
important for good results. Mask R-CNN is different
from the Faster R-CNN in three points. The first point
is that the Mask R-CNN adds a mask branch to predict
the category of every pixel in the region proposals. The
second point is that the use of the RolAlign [13] to
achieve the pixel-pixel alignment between network in-
puts and outputs. The third point is the definition of the
mask loss. For each Rol associated with ground-truth
class k, mask loss is only defined on the k-th mask
(other mask outputs do not contribute to the loss).

Method

In this article, we used a novel method for employing the
state-of-the-art deep learning framework Mask R-CNN.
For a more refined result and a faster training speed, we
modified the Mask R-CNN to adapt to our dataset. We
changed the loss function of the class branch and adopted
the Atrous Convolution [12] in the backbone network. In
order to make a better segmentation result, we tried several
mainstream backbone networks, and the R101FA demon-
strated the best segmentation results.

Data set
From December 2017 to June 2018, we worked with the
burn department of the Wuhan Hospital No. 3. Ethics
approvals were granted by the Wuhan Hospital No. 3 and
Tongren Hospital of Wuhan University. The patients used
in this research have already signed the informed consent.
In order to obtain enough data, we used our smartphone
to collect images of fresh burn wounds in the hospital
every day. Then, we used our own software to annotate
burn images and saved the marked content in Common
Objects in Context (COCO) data set format. Figure 2
shows the software which we used to annotate. In order to
ensure the accuracy of this framework, we annotated the
burn images carefully under the guidance of the profes-
sional doctors and avoided mistaking confusing parts such
as gauze and blood stains as wounds. With the help of
doctors and nurses, we finally annotated 1000 burn images
for training and another 150 for evaluating.

Network architecture

As shown in Fig. 3, our framework contains three parts.
The first part is the backbone network to extract the
feature maps. The second part is the RPN [9] network
to generate the Rol [9]. Finally, we process the object
detection and mask prediction from each Rol. Because
there is only one category (here, we do not consider the
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annotation tool is made with QT (a C++ framework)

\

Fig. 2 Annotation tool. With the help of professional doctors, we use the corresponding annotation tool to annotate the image data. This

depth of burn wound), we changed the loss function of
the mask branch and classification branch to fit our
data set. In the process of training, we collected almost
all kinds of burn wound images to train our model, to-
taling 1000 after filtering. At the same time, in order to
realize faster training speed and less evaluating time,
we tried different backbone networks in our framework.
Finally, we used the R101FA as the backbone network
of our framework.

In this article, our backbone network is based on the
R101FA. The ResNetl01 is made up of 101 layers. We
use C;, Cy, C3, Cy, and Cjs to define these output feature

maps. As shown in Fig. 4, we obtain final feature maps
P,, P3, P, and Ps.

Here, we use a 1 x 1 convolution kernel to get the first
feature map Ps by undergoing the output of the Cs. Then,
we upsample the Ps to get the P” and produce C™ by the
3 x 3 convolution kernel undergoing the Cs, and the P,
map is the result of merging C* with P", After iterating all
C, we can build P,, Ps, P4, and Ps.

Atrous
In the convolutional neural network, we employ atrous
convolution [12] in ResNet. The traditional convolution
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Fig. 3 Block diagram of the burn image segmentation framework. The framework contains three parts. The blue part is extracting the features from
the image. The red part is the region proposal network to generate the regions of interests. The green part is the network heads to classify and regress

\

Fig. 4 The process of generating feature map. The left column is the bottom-up of the feature pyramid network (FPN). The right column is the
top-down of the FPN. The middle column is the lateral connection of the FPN
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kernel is usually composed of a dense matrix of N x N.
The kernel of atrous convolution is no longer a dense
matrix, and it is shown by Fig. 5 that different rates
represent different convolution kernels. Compared with
traditional convolution kernels, employing a larger value
of atrous rate enlarges the model’s field-of-view, enabling
object encoding at multiple scales. This structure is
suited for our burn dataset which consists of varying
burn depths and burn sizes. In this research, we set the
rate at 2.

RPN in FPN

We adopt RPN in FPN to propose the candidate of region
proposals. The detail is different from the original RPN
network. The original RPN network just adopts one fea-
ture map, but in our network, we build several feature
maps. In order to handle the images easier, we resized the
images to 1024 x 1024 and filled the image with zero to
prevent distortion. In order to contain all possible rect-
angular boxes, we defined five scales 32 x 32, 64 x 64,
128 x 128, 256 x 256, and 512 x 512. Every scale has three
aspect ratios 0.5, 1, and 2. It was not necessary to define
all scales on every feature map; we just defined one scale
per feature map. Here, in order to correspond five scales,
we added Pg on the basis of P5 and it is the output of the
max-pooling after the Ps. Hence, according to this idea,
we can generate all possible rectangular boxes (anchor
[9]) on the original image.
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In the RPN network, we filter N numbers of Rols by a
small convolution network. This small network deter-
mines the object possibility of each anchor, and we call
this possibility anchor score. We sorted all the anchors
by this score and take the top N high score boxes as
Rol. Moreover, in order to adjust the position of each
anchor, the small network also predicts the regression
offsets of each anchor. Therefore, in FPN, there are
several feature maps and this small network is shared
with all feature maps, and the detail is shown in Fig. 6.

RPN training

As shown in Fig. 6, the outputs of the RPN network are
score and regression offsets of each anchor. Here, we define
two loss functions to train the RPN network. The first is
the score loss Lypnscoreand the second is regression loss
Lraneg'

To calculate L,pnscorer We assign two kinds of labels
which are the positive label and the negative label to
each anchor. The anchor which has an intersection over
union (IOU) overlap higher than 0.7 with any
ground-truth bounding box is a positive label, and the
anchor which has an IOU overlap lower than 0.3 with all
ground-truth boxes is a negative label. Here, in order to
ensure that all the ground-truth boxes correspond to at
least one anchor, we will label the highest IOU anchor
with each ground-truth box as a positive label. There-
fore, we can get all the positive and negative anchors.
We encode these anchors into a sequence of 0 and 1,

Conv
Kernel :3X3
Rate:1

Conv
Kernel :3X3
Rate:2

Conv
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Rate:3
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Fig. 5 Atrous convolution. Atrous convolution with kernel size 3 x 3 and different rates. From left to right in the figure, the atrous rates are 1, 2,
and 3. Standard convolution corresponds to atrous convolution with rate = 1. In this article, we set the rate as 2




Jiao et al. Burns & Trauma (2019) 7:6

Page 7 of 14

rﬁ e

neural network. The right column is to classify and regress

Fig. 6 The detail of the region proposal network. The left column is the output of the feature extracting. The middle content is the convolutional
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and the sequence is the objective output in the RPN tar-
get judgment. As it is shown in Fig. 6, we apply the soft-
max function to the output of the RPN to get target
possibility for all anchors. And then, we use the
cross-entropy function to calculate the L,pnscore.

Then, we apply a linear function to the output of
the RPN network and predict the regression parame-
ters (£). We calculate the regression offsets (f) of
each positive anchor. The regression offsets are the
same as [8], and it contains four values (x, y, w, h). x
and y are the offset ratios of the positive anchors’
center point based on the associated ground-truth
boxes center point. Then, w and / are the logarithmic
values of the aspect ratio of positive anchors and the
associated ground-truth boxes. Finally, we used the
smoothy; to calculate the L,,,z,, Which is shown in
Eq. 1. Here, we stipulate that just the positive anchor
will contribute the L,,,zeq.

Lraneg t z -

Z[p reg (L, £} (1)

Here, i is the index of an anchor in the mini-batch
and p! is 1 if the anchor is positive; otherwise, p; is
0. Here, t; and t; are the four vectors representing
the regression offset, and ¢, represents regression
offset of a positive anchor based on the associated
ground-truth box. And £ represents the predicted re-
gression offset. The regression loss function is shown
in Eq. 2. The smooth;; is defined in Eq. 3.

Lreg(t7 t*) — Ziex.y.w hsl‘l’lOOthL1 (t—t}k) (2)

0.5 x*

if x| <1
1%]-0.5 )

otherwise

smoothy, (x) = {

We used Eq. 4 to make a detailed explanation for re-
gression offset.

X—Xg V=V
Iy = t, =

W, Y h,
t, = lo (> th = lo <h>
e T
t* :x —Xa t* _y*_ya
* W, Y h

After choosing the Rols from the anchors, we map the
Rols on the feature map for subsequent operation of the
framework. But in our framework, we have four feature
maps. Unlike generating anchors, we do not make each Rol
correspond to a feature map. Considering that P, contains
all image features, we map all Rols to P,. After mapping,
the three parallel branches handle the mapping results.

Loss function

In our framework, our loss contains five aspects. The
RPN network contains two losses. In the parallel
branches, there are three losses. We define the three
losses as Licisy Lmbregs aNd Linmask- Therefore, our final
loss is L :Lrancore+Lraneg+LmCls+LmBReg+ LmMasl<~
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Class loss

In Mask R-CNN, the author applied sofimax on the output
of the fully connected layer and used the cross-entropy
function to calculate the class loss. This method was
applied to solve the multi-class classification tasks. But in
our task, our goal is simply to segment the burn wounds.
Therefore, we used two classifiers to replace the multiple
classifiers. We applied the sigrmoid function on the output
and used the cross-entropy function to calculate the loss.
We used y to define the ground-truth of the N Rols. The
output of sigmoid is y . Then, the L is Eq. 5.

Lmcis = izy(yi « (= logy}) + (1-y;) * (- log(1-57)))

N
(5)

Bounding-box loss

As mentioned above, the RPN network will predict the
regression offset of each anchor. In the box branch, the
input will be the coordinate of Rol. These coordinates
are the result of the Rol that applied the regression off-
set of the RPN network. We then used the same way as
Lypureq to calculate the L greg.

Mask loss
In Mask R-CNN, the author applied a small FCN [14]
network on the Rol. And in the mask branch, the author
predicted the m x m mask. The mask is the output of
the sigmoid function which is applied to each pixel.
Then, the author calculated the mask loss according to
the mask class to avoid the competition between classes
and used the binary cross-entropy to define the loss.
However, in this article, we just calculated the mask
loss of the positive Rol and did not use the idea of com-
petition between classes. Moreover, we defined the size
of each ground-truth mask and predicted the mask as
28 x 28 to reduce memory consumption. Hence, the
ground-truth Rol was scaled to 28 x 28 and padded with
zero to avoid distortion. In the output of the mask
branch, we will scale each Rol to the same size to calcu-
late the mask loss.

Regularization loss

As mentioned above, we collected little data sets. And in
order to prevent over-fitting of the model, we add the
loss of regular term for entire loss function. We can see
the details from the formula 6

n 1
LregLoss = /121':1 <W12 . A[_w> (6)

This is the L2 regularization loss which represents the
weight decay and aims to reduce the weight values to fit
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data well. In the formula, W; is the weight values of the
i-th layer and N,, is the size of the W, The 1 is a
hyper-parameter which is set as 0.0001 here.

Training detail

In order to obtain better training results, we did not ran-
domly initialize weight in this framework. The
initialization of the weight includes two parts. In the
convolutional neural network, we used the pre-trained
COCO model to initialize our backbone network. In the
network head, we used the Gaussian distribution to
initialize the weight values. Similar to the transfer learn-
ing, we fine-tune the convolutional neural network of
our framework by collecting data.

Moreover, we tried several convolutional networks to
extract the feature map from the original image. These
backbone networks are Residual Network-101 with Atrous
Convolution (R101A), Residual Network-101 with Atrous
Convolution in Feature Pyramid Network (R101FA), and
InceptionV2-Residual Network with Atrous Convolution
(IV2RA). Through the experiment, we find the R101FA
backbone has the best segmentation result. Before train-
ing, the images are resized to a 1024 width for a proper in-
put in the network. Then, similar to the [10], the input
data will undergo five convolution layers C;, C,, C3, Cy,
and Cs which have strides of 2, 4, 8, 16, and 32 related to
the input image.

After extracting a feature map, the RPN network han-
dled the output of the backbone network. First, the RPN
network generated N anchors (the anchor scale is for
the original image) on the center of the sliding window.
Then, we calculated the IOU value (per anchor) to judge
if the anchor is positive or negative. As in [8, 9], each
image has N-sampled Rols which have a ratio of 1:3 of
positive to negatives. Then, we pooled each positive an-
chor to a fixed size. After that, we connected a fully con-
nected network to extract a 2048 dimensions feature
vector. This vector is used for the classifier and the box
regressor. At the same time, the Rols will undergo two
convolution layers, then we predicted the image mask.

Burn area calculation

Burn area calculation is an important part of burn diagno-
sis. The framework as mentioned above is an auxiliary
technique for calculating burn area and has great signifi-
cance for fast, convenient, and accurate burn area calcula-
tion. As it is shown in Fig. 1, for example, the second
method needs to manually mark the edge of the burn
wound when calculating. Similar to the 3D application, it
is not conducive for rapid treatment of patients. However,
if we combine our segmentation framework with this soft-
ware, we can get a more efficient and convenient area
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calculation tool. In a sense, we can apply our framework
to the calculation of burn wound area.

In our plan, we intend to combine the 3D modeling
and mesh parameterization technology with our seg-
mented framework which calculates the burn wound
area. The calculation mainly consists of three steps:

o Step-1: Building a 3D model of patient pictures
through 3D reconstruction technology.

e Step-2: Mapping the 3D model to the planar domain
by mesh parameterization algorithm.

o Step-3: Segmenting the burn regions by using our
framework and calculate the total body surface area
(TBSA) value.

Some 3D reconstruction technologies are already very
mature, such as BodyTalk reconstruction system [15] and
Kinect reconstruction system [16], which makes the 3D
model building process easier. The mesh parameterization
algorithm such as RiccFlow [17] and Authalic [18] make
the second step easier to implement. Hence, our segmen-
tation framework can achieve a faster, easier, and more ac-
curate area calculation.

Results

Burn characterization

There are four main depths of burn wounds: (i) superficial
dermal burn, (ii) superficial partial thickness burn, (iii)
deep partial thickness burn [19], and (iv) full-thickness
burn. Figure 7 shows the four depths of burns across four
images.

In the past, image processing techniques for total or
partial segmentation often use evolving curvilinear
boundaries because of their adaptive capacity and mod-
eling of the internal structures of the images [19, 20]. In
this article, we come to the conclusion that the burn
does not exhibit uniform boundaries. Moreover, various
depths of wounds make the segmentation work harder.
The traditional technologies no longer work in the burn
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segmentation if we want to segment all burn situations.
Hence, we adopt the deep learning framework to realize
the segmentation.

Segmentation results

In this paper, our framework mainly segments the burn
wounds without classifying the depth of the wound. How-
ever, in order to show the stability and generalization abil-
ity of our work, we selected 150 images to evaluate our
method. With the help of professional doctors, we com-
bined these images from the different burn area size im-
ages and different burn depth images.

Segment different sizes

The first advantage is that our model can segment the
different sizes of the burn wounds. Through the experi-
ment, our model expressed high robustness of the differ-
ent burn wound sizes. We chose the four depths of burn
wounds. As it is shown in Fig. 8, our model performed
fine segmentation in the %TBSA <5% burn wound.
Moreover, for the large burn area, our model also per-
formed very well. This is also shown in Fig. 8.

Segment different depth

There are many reasons to cause a burn such as hydro-
thermal fluid, high-temperature gas, and flame. In
addition, these reasons can lead to different burn
wounds depths. Because of the variance of each depth of
burn, it increases the difficulty of segmentation. How-
ever, in our model, we can segment the different burn
wound depths successfully. Figure 9 shows the segmen-
tation results of different depth burns.

Method comparison
We compared our method with traditional methods and
modern methods.

(a)

(b)

Fig. 7 a-d Different burn depth. From left to right is superficial, superficial thickness, deep partial thickness, and full-thickness burn

(c) (d)
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?‘9 " il

— N
Fig. 8 Segmentation results of different burn wounds sizes. The first and second rows show the %TBSA< 5% wounds and the segmentation
results of R101FA. The third and fourth rows show the %TBSA> 20% wounds and the segmentation results of R10TFA (R107FA residual network-
101 with atrous convolution in feature pyramid network. TBSA total body surface area)

Traditional methods

In the image segmentation, the traditional methods al-
ways use the edge features or spectral feature of the
image to accomplish the segmentation. In this article, we
tried the Watershed Algorithm [21] for our burn images.
The Watershed Algorithm is based on the edge of the
image and also labels the spectral feature on the image.
Most of the time, this algorithm uses the color histo-
gram to decide which color is to be the watershed. But
in the burn images, there are many colors similar to the
burn wound. This element made it difficult for the
watershed algorithm to segment the burn wounds. We
finally tried a different parameter to get better segmenta-
tion. As shown in Fig. 10, we can see that the Watershed
Algorithm could not show good segmentation in a com-
plex picture environment.

Modern methods
In recent years, the image segmentation method which is
based on deep learning achieves excellent performance. In
this article, therefore, we chose different architectures to
be the backbone network in our framework. These back-
bone networks are IV2RA [22], R101A [10], and R101FA.
In training, for the best training effect, we set 20
epochs for IV2RA and R101A. But in our method, we
set 16 epochs. Each epoch contained 1000 iterations.

First, we will show the loss reduction of the different
backbone networks. As shown in Fig. 11, we see that our
method can achieve a better loss reduction than two of
the other backbone networks. Moreover, our method
used fewer epochs than the other backbone networks.
During the evaluation, we chose 150 burn images to
evaluate the different backbone networks. Here, because
we only considered the wound segmentation effect, there
was no need to use the mean average precision to evaluate
the model. Hence, we chose the Dice coefficient (DC) [23]
to evaluate the percentage of segmentation accuracy from
the ground truth. The DC measures the concordance be-
tween two enclosed areas. The formula is as follows:

27P

DC% =100 ——F——
% FP 4 2TP + FN

(7)

In detail, the number of false positives is the FP value.
The false positive represents the incorrectly segmented
pixels. The FN is the number of false negatives. The false
negative represents the target pixels that are not
segmented. TP is the true positive. The true positive
represents the correct segmentation pixels. Therefore,
we calculate the DC value of the different backbone
networks. The result is shown in Table 1.
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full-thickness burn from top to bottom
A

Fig. 9 Segmentation results of different burn wound depths. These four lines are the superficial, superficial thickness, deep partial thickness, and

From the DC values, we discover that our backbone
network R101FA has the highest accuracy. In other
words, our model has a better result in burn image
segmentation.

To more fully evaluate our model, we chose the differ-
ent burn images. We chose a total of 120 pictures of dif-
ferent burn depths. There were 20 superficial burns, 50

superficial thickness burns, 40 deep partial thickness
burns, and 10 full-thickness burn. Because of a lack of
burn images, for the full-thickness burn, we were only
able to analyze 10. Then, we calculated the DC values of
the different backbone networks.

As shown in Table 2, our model showed better seg-
mentation in the superficial, superficial thickness, and

78 = —

Fig. 10 Traditional methods compared. The first line is the result of the watershed algorithm and the second line is the result of R10TFA (RT0TFA
residual network-101 with atrous convolution in feature pyramid network)

Lty
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Fig. 11 Loss results of different backbone networks. IV2RA inceptionV2-residual network with atrous convolution, R7T07A residual network-101 with
atrous convolution, and RT07FA residual network-101 with atrous convolution in feature pyramid network

—IV2RA
——R101A
——R101FA

150000

deep partial thickness. Perhaps due to the lack of
full-thickness burn images, the results for full-thickness
burn in our model were slightly worse than the other
models.

On the other hand, there were many patients with ex-
tensive burns in the clinical. Therefore, our method
needed to demonstrate excellent results in this aspect.
Therefore, we selected different burn area size images to
evaluate different models. The result is shown in Table 3.

As shown in Table 3, the IV2RA has the highest aver-
age DC value for 5%< %TBSA <20% wounds and the
R101A has the highest average DC value for the %TBSA
<5% wounds. At the same time, our method has the
highest average DC value for the %TBSA >20% wounds
and also has good results in two other sizes.

In order to ensure efficient hospital treatment, the pre-
diction time for each picture must be short. We com-
pared the prediction time of the different backbone
networks. As shown in Table 1, our models needed only
0.37 s to predict an image which was the fastest predic-
tion speed.

Table 1 Average Dice’s coefficient (DC) value and prediction
speed per picture

Discussion

Burn image segmentation is the first step in the intelli-
gent diagnosis of burn wounds. The precise segmenta-
tion is important to the follow-up treatment. In this
article, we propose a state-of-the-art segmentation
framework to segment the burn images. Compared with
the traditional method, this method greatly improves the
accuracy of segmentation and contributes immensely to
the burn clinic. However, there are still some problems
to be solved in this framework. As is known to all, deep
learning technology requires a large number of data to
ensure the accuracy of the model. In this framework,
due to the complexity of data collection and annotation,
we only provided almost 1000 pictures to train this
model. This makes the model show bad segmentation
results in some burn images. In addition, our framework
cannot classify the depth of burn wound. In general, the
evaluation of wound depth information needs to be
combined with the professional knowledge of the doctor,
which makes the process of data annotation extremely
complicated and difficult for non-professionals to

Table 2 Dice’s coefficient (DC) values of different burn depth in
different models

Model name Average DC value Prediction speed
(per/second)

R101FA (our method) 8451" 0374%

IV2RA 83.02 0.538

RT101A 82.04 0519

*The highest average DC value in different models

*The fastest prediction speed in different models

R101FA residual network-101 with atrous convolution in feature pyramid
network, IV2RA inceptionV2-residual network with atrous convolution, R707A
residual network-101 with atrous convolution

Burn depths Model name

R101FA (our method) IV2RA R101A
Superficial 89.7" 8361 7737
Superficial thickness 8521 82.52 8491
Deep partial thickness 8454 84.44 81.96
Full-thickness burn 81.12 74.56 835

*The highest average DC value of this burn depth in different models
R107FA residual network-101 with atrous convolution in feature pyramid
network, /V2RA inceptionV2-residual network with atrous convolution, R707A
residual network-101 with atrous convolution
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Table 3 Dice’s coefficient (DC) values of different burn sizes in
different models

Burn sizes Model name

R10TFA (our method) IV2RA R10TA
9%TBSA < 5% 836 86.48 86.63"
5% < %TBSA< 20% 86.13 8806 84.85
%TBSA> 20% 8127 72.33 74.13

*The highest average DC value of this burn size in different models

R101FA residual network-101 with atrous convolution in feature pyramid
network, IV2RA inceptionV2-residual network with atrous convolution, R107A
residual network-101 with atrous convolution

complete. Later, we will collect enough data sets to train
the framework to improve the accuracy of the segmenta-
tion. Moreover, we will mark the burn wound depth in-
formation with the help of the professional, so as to
classify the burn wound depth in this framework. And
then we will apply our framework to calculate burn area.

Conclusions

This article proposed a new segmentation framework to
segment the burn images based on deep learning tech-
nology. In the comparison experiment, we compared the
feature extraction capability of different backbone net-
works. We found that the R101FA backbone network
has the best result in accuracy and prediction speed. Fi-
nally, we achieved an average of 84.51% accuracy on 150
images. In practice, our method is more convenient than
traditional methods and requires only a suitable RGB
wound picture. It brings great benefits to the clinical
treatment of the hospital.
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